
Customising
TDrawGrid For Text Grids
by Steve Tung

Delphi provides two compo-
nents for handling tabular

data: TStringGrid and TDrawGrid. At
first glance, it seems TStringGrid is
intended for textual data while
TDrawGrid is more suitable for
graphical data. This is far from the
truth! TDrawGrid is not only capable
of handling textual data, it is also
more flexible. Unlike TStringGrid,
TDrawGrid does not have internal
data storage. Instead, users must
manage its data externally. The
separation of data from the user
interface has a great advantage. It
gives you the freedom to handle
your data with any algorithm.

To demonstrate the use of
TDrawGrid, I created a New World
Order application, which shows a
table of a number of countries with
some geographical information
(Figure 1). There are two functions:
Merge combines any number of
countries and Split separates a
country into two. The user can also
sort the table by any column in any
direction.

First Attempt
First, let’s look at how we would
build the application with TString-
Grid. Populating the TStringGrid is
straightforward enough: just fill
the Cells property with the corre-
sponding text. The numeric data is
first converted and formatted into
strings.

Next we need to sort the table.
The user does this by clicking on
the heading of any column. Clicking
once sorts the column in descend-
ing order, clicking the same head-
ing again sorts it in ascending
order. To receive mouse clicks on
the column headings, I use the
OnMouseUp event. OnMouseUp passes
the mouse coordinates as parame-
ters. They can be converted into
row and column data by using
Delphi’s built-in MouseToCell proce-
dure. If a heading is clicked,

SortGrid is called to sort the table
(see Listing 1).

SortGrid uses a simple bubble
sort. Here we begin to feel the
inconvenience of TStringGrid. To
exchange two rows, we must ex-
change every cell individually.
Worst of all, the algorithm has
something wrong. It compares
every cell as a string, not as a
number. In numeric columns, 1000
is sorted before 500! To convert the
formatted string (with comma
separators) back into numbers is
tedious. It would be much easier
if the data was available in the
original numeric format.

TDrawGrid
The problem with TStringGrid is
that data is stored in the grid’s
Cells property, which is of type
String. Of course this is not the
best representation of our data.
Instead of putting the data inside
TStringGrid, we can control it
ourselves and display it using a
TDrawGrid. I defined a TCountry class

for each country and a TCoun-
tryList class, which descends
from TList, as the container for all
countries (see Listing 2). You will
find an extra field, Selected, in
TCountry, which is used later to
implement multiple selection.

To display our data with TDraw-
Grid we use the OnDrawCell event. It
is called whenever a grid cell needs
to be displayed. In the OnDrawCell
event, we only need to determine
what text to display and then draw
it by calling DrawCellText (see
Listing 3). The cell is either a
column heading or a data cell. If it
is a data cell, its data is available
from Countries.Items[Row-1].

DrawCellText looks slightly com-
plicated. It first sets the font color.
Then it displays the text by calling
the ExtTextOut Windows API func-
tion To add some spice, I included
an alignment parameter in Draw-
CellText. We can now align text on
the center or on the right!

Sorting of the different columns
is now achieved by sorting the

➤ Figure 1

16 The Delphi Magazine Issue 14

TCountryList. The TList class does
not have a sort method, but it is not
difficult to add one. To exchange
rows in a TList is much easier than
in a TStringGrid as TList provides
an Exchange method. Furthermore,
we are now correctly comparing
the area and population columns
as numeric data, not strings! Once
the list is sorted, we call the grid’s
invalidate method to redraw the
sorted data.

Before we can proceed to imple-
ment the Merge function, I need to
solve a big problem. Delphi’s grid
does not provide multiple selec-
tion. The goRangeSelect option al-
lows user to select a range of data,
but not separate non-contiguous
rows. Although in real life most
merging will happen between geo-
graphically connected countries, I
find it hard to convince users that
they are also restricted to merging
only adjacent rows! Therefore I
must set off to implement multiple
selection myself.

Multiple Selection
Although it takes some work, en-
hancing the grid with multiple se-
lection is not impossible. We must
decide how to store the selection,
how users can make selections and
how to draw them.

Since the grid must allow the
selection of any combination of
rows, I find it best to embed the

TCountry = Class
 Name: String;
 Area, Population: Longint;
 Selected: Boolean;
 constructor Create(AName: String; AArea, APopulation: Longint);
end;

TCountryList = Class(TList)
private
 function Get(index: Integer): TCountry;
 procedure Put(Index: Integer; Item: TCountry);
public
 procedure Sort(ACol: Longint; Desc: Boolean);
 property Items[Index: Integer]: TCountry read Get write Put;
end;

TFrmNewWorld2 = class(TForm)
 ...
 Countries: TCountryList;
end;

➤ Listing 2

procedure TFrmNewWorld1.GridExchange(
 Grid: TStringGrid; row0, row1: Longint);
begin
 with Grid do
 for i := 1 to ColCount do begin
 s := Cells[i,row0];
 Cells[i,row0] := Cells[i,row1];
 Cells[i,row1] := s;
 end;
end;

procedure TFrmNewWorld1.SortGrid(ACol: Longint; Desc: Boolean);
var
 i,j: Longint;
begin
 with Grid do
 { bubble sort }
 for i := 1 to RowCount-1-FixedRows do { Remember to minus FixedRows! }
 begin
 for j := RowCount-FixedRows downto i+1 do begin
 if Desc and (Cells[ACol,j] Cells[ACol,j-1]) then
 GridExchange(Grid,j,j-1);
 if (not Desc) and (Cells[ACol,j] Cells[ACol,j-1]) then
 GridExchange(Grid,j,j-1);
 end;
 end;
end;

➤ Listing 1

procedure DrawCellText(Sender: TDrawGrid; const Text:
 String; ACol, ARow: Longint; ARect: TRect; State:
 TGridDrawState; Alignment: TAlignment);
begin
 with Sender do begin
 if (ACol = FixedCols) and (ARow = FixedRows) then
 if gdSelected in State then begin
 Canvas.Brush.Color := clHighlight;
 Canvas.Font.Color := clHighlightText;
 end else begin
 Canvas.Brush.Color := Color;
 Canvas.Font.Color := clWindowText;
 end;
 w := Canvas.TextWidth(Text);
 case Alignment of
 taLeftJustify : x := ARect.Left + 2;
 taCenter : x :=
 (ARect.Left + ARect.Right - w) div 2;
 taRightJustify: x := ARect.Right - w - 2;
 end;
 ExtTextOut(Canvas.Handle,
 x, ARect.Top + 2, ETO_CLIPPED or
 ETO_OPAQUE, @ARect, @(Text[1]), Length(Text), nil);
 end;
end;

procedure TFrmNewWorld2.GridDrawCell(Sender: TObject;
 Col, Row: Longint; Rect: TRect; State: TGridDrawState);
begin
 { Assign text to display }
 Text := ’’;
 if Row = 0 then { header row }
 case Col of
 1: Text := ’Country’;
 2: Text := ’Area (1000 sq km)’;
 3: Text := ’Population’;
 end
 else { data rows }
 with Countries.Items[Row-1] do begin
 ...
 case Col of
 1: Text := Name;
 2: Text := FormatNum(Area);
 3: Text := FormatNum(Population);
 end;
 end;
 { Set text alignment }
 Alignment := taLeftJustify;
 if Col in [2,3] then
 Alignment := taRightJustify;
 DrawCellText(Sender as TDrawGrid, Text, Col, Row,
 Rect, State, Alignment);
end;

➤ Listing 3

October 1996 The Delphi Magazine 17

➤ Figure 2

procedure TFrmNewWorld2.GridMouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 ...
 MouseToCell(X, Y, ACol, ARow);
 ...
 if ssCtrl in Shift then
 with Countries.Items[Grid.Row-1] do
 selected := not selected
 else begin
 for i := 0 to Countries.Count-1 do
 with Countries.Items[i] do
 selected := i = ARow-1;
 end;
 ...
end;

procedure TFrmNewWorld2.GridKeyPress(Sender: TObject; var Key: Char);
begin
 if Key = ’ ’ then begin
 with Countries.Items[Grid.Row-1] do
 selected := not selected;
 Grid.Invalidate;
 end;
end;

➤ Listing 4

procedure TFrmNewWorld2.BtnMergeClick(Sender: TObject);
begin
 ...
 Countries.Add(NewCountry);
 for i := Countries.Count-1 downto 0 do
 if Countries.Items[i].Selected then begin
 Countries.Items[i].Free;
 Countries.Delete(i);
 end;
 ...
 Grid.Invalidate;
end;

procedure TFrmNewWorld2.BtnSplitClick(Sender: TObject);
begin
 ...
 Countries.Items[i].Free;
 Countries.Delete(i);
 Countries.Add(Country1);
 Countries.Add(Country2);
 ...
 Grid.Invalidate;
end;

➤ Listing 5

selection information in the re-
cords themselves. This is what the
Selected field in the TCountry class
is used for. To test if a record is
selected, just check Countries.-
Items[Row-1].Selected. The origi-
nal Selection property of the grid
is still present, but we will ignore it
and use only our selection.

Next, we have to design the user
interface. The scheme is simple.
Clicking a record selects only that
record. Holding the Ctrl key while
clicking toggles the selected state
of that record. Alternatively, the
user may make a selection with the
keyboard by pressing the space
bar to toggle the selected state of a
record. To do this we need to
handle OnMouseDown and OnKeyPress
events (see Listing 4).

Finally we must draw the se-
lected rows. This is done in the
DrawCellText procedure. To show a
row as selected, we set Brush.Color
and Font.Color to clHighlight and
clHighlightText respectively. Note
that if the DefaultDrawing property
is set (the default), Delphi chooses
the color and paints the back-
ground for us before calling OnDraw-
Cell. However, it only knows its
own Selection! Fortunately Draw-
CellText paints over the whole cell,
so we have the final say in what is
really selected.

Merge And Split
Finally we come to implement the
core functions of the application.
Merge totals the area and popula-
tion of the selected records and
suggests a new country name by
joining the names of all the partici-
pating countries (see Figure 2).
Split divides the area and popula-
tion into two equal parts and sug-
gests two new names. The actual
data manipulation is easily done by
calling the Add and Delete methods
of TList. Again we must invalidate
the grid to re-display the data after
any change (see Listing 5).

Conclusion
We spent a lot of effort to add fea-
tures like text alignment and multi-
ple selections to Delphi’s grid. But
the greatest gain is that we can use
TDrawGrid to display our own data.
Initially it may need more code

than with TStringGrid, but this will
pay off when complicated data
manipulation is required. Indeed,
data manipulation is so easy that
the Merge and Split section is the
shortest in this article!

Steve Tung has been working as a
Delphi developer in Singapore,
but when you read this he will be
on an extended break, travelling
the world (lucky fellow!).

18 The Delphi Magazine Issue 14

	First Attempt
	TDrawGrid
	Multiple Selection
	Merge And Split
	Conclusion

